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Abstract: High velocity fragment or bullet interaction with thin walled fluid-filled containment is 
investigated. Fragment subsonic motion in compressible fluid was studied being the function of the depth of 
perforation under the water level in case the containment was partially filled with water and partially with 
gas having a distinct fluid-gas interface. Approximation formulas were developed making it possible to 
simulate resistance and drag forces being functions of governing parameters. The developed models were 
validated by comparing theoretical data with results of experiments. The obtained solutions are applicable for 
developing concepts for effective shield design protecting from high velocity fragments. 
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INTRODUCTION' 

Capturing high velocity impact fragments is an acute 
problem for protecting Space vehicles from different 
elements of Space debris [1-3], protecting aircrafts 
against accidental explosions of terroristic nature [4, 5]. 
Orbital debris environment is a serious hazard to Space 
missions nowadays. Collision with a debris metallic 
particle of 1 cm radius is energetically equivalent to a 
collision with half a ton mass car moving at a speed 
100 km per hour. [6-9]. The problem of spacecrafts 
shielding from small particles could be solved 
protecting them by fluid-filled containments, which 
consume the impact energy and redistribute momentum 
on a wider area of protected wall [9-11].  

The present paper is aimed at studying 
dynamics of impactor deceleration after wall 
perforation of the fluid filled containment. The 
problem will be studied being the function of the depth 
of perforation under the water level in case the 
containment is partially filled with water and partially 
filled with gas having a distinct fluid-gas interface. The 
models will be verified against results of experiments.  

 

MODEL FOR PARTICLE INTERACTION WITH 
FLUID-FILLED CONTAINMENT 

Most of spacecrafts contain pressurized gas-
filled or fluid-filled vessels as structural elements. 
Fragmentation of a gas-filled or fluid-filled 
containment in hypervelocity collision has definite 

peculiarities and differs from trivial perforations of 
walls [1]. The present paper will describe the model for 
the fragment impact on a rather thin-walled 
containment, which could be filled in with gas, liquid, 
or both liquid and gas phases having a distinct phase 
interface. Ground-based experimental investigations 
described in [12] were performed, in particular, for 
aluminum cylindrical containments placed vertically, 
diameter 70 mm, wall thickness 0.1 mm, aluminum 
impactor D = 5.4 mm in diameter and length 

(0.56 1.0)L D= ÷ , impact velocity ranging 2.7 – 
3.0 km/s. Experiments performed by ourselves used the 
impactor mass 0.2 g accelerated up to 2.0 km/s. We 
used gas filled containments, fluid filled containments 
and partially filled with fluid, partially with gas. The 
scheme of experiments is shown in Fig. 1. In case of 
distinct fluid-gas interface the fragment perforated the 
wall at a different depth under the water level, which 
demonstrated different scenario of containment 
breakup.  

Experiments showed, that in case impact took 
place above the liquid level the results were the same 
as for the gas filled containment: perforation of the 
front and rear walls. In case impactor collided the 
containment below the liquid level, catastrophic 
damage of the front or rear walls, or both could take 
place associated with fractures growth from the 
perforation zone in all directions and opening the walls 
of the containment outside as if being the result of 
intense internal loading. Fig. 2 shows containments 
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with front (perforated) wall broken, while the rear wall 
is not damaged. 

Here we’ll provide theoretical background for 
the observed phenomenon. 

 

 
Fig.1. Experimental setup. 
 

 
 
Fig. 2. Front view of fluid filled containments subjected to front impact. 

 
 

Fragmentation of a gas-filled or fluid-filled 
containment in high velocity collision has several 
characteristic stages. The first stage is perforation of 
the wall in the collision zone and fragments penetration 
inside the containment. Formation of cracks (and 
petals) in the collision zone do not usually bring to a 
breakup of the containment at the present stage. The 
penetrating fragments form a shock wave in the media, 
filling the containment (Fig.3).  

The fragments slow down very rapidly due to 
the drag forces. The deceleration for fragments is 
proportional to 1 0r and grows up with the decrease of 
a characteristic size r0. The velocity decrease is 
exponential and could be estimated by formula: 

0

0

3exp( )
8rel rel d

c

xv v C
r

ρ
ρ

= − , (1) 

where dC  is drag coefficient, ,cρ ρ - density of 

fragment and gas respectively, 0r - radius of fragment.  
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Fig.3. Schematic picture for fluid-filled 
containment perforation. 

It is seen from (1) that on decreasing fragment 
size the slowing down distance also decreases. On 
slowing down the fragment conversion of its kinetic 
energy into the internal energy of the surrounding gas 
(or fluid) takes place. The rapid increase of the density 
of energy in a small volume inside the containment is 
similar to that for the local explosion. The energy 
release gives birth to diverging blast waves inside the 
containment that reflects from the walls thus producing 
non-uniform loading. The concentrated energy release 
causes blast waves of high intensity. Thus the wall 
being more close to the blast point exercises higher 
loading. The breakup of the wall causes the pressure 
drop and the rarefaction waves, which go inside the 
containment, overtaking the blast wave and lowering 
down its intensity [13 – 15]. Thus the far wall will be 
much less loaded. 

As it is seen from formula (1) the rate of 
deceleration depends on density ratio. The less is the 
fluid density, the slower is deceleration, and the weaker 
is the shock wave formed inside containment. Due to 
that reason increase of overall initial pressure brings to 
formation of stronger shock waves and increase of the 
damage level. Penetration of fragment deep below the 
liquid level also brings to its faster deceleration due to 
much higher density ratio as compared to deceleration 
in gas. However, overall drag coefficient is dependent 
on the depth of fragment motion below the liquid-gas 
interface, because gas is highly compressible as 
compared with liquid, which permits fluid separation 
from the fragment thus reducing the drag on 
approaching the free surface [16, 17].  
 
MATHEMATICAL STATEMENT FOR THE 
PROBLEM OF THIN FRAGMENT MOTION 
UNDER FREE SURFACE 
The two-dimensional problem of fluid streaming thin 
fragment motion with formation of infinite (Fig. 4) or 
final length (Fig.5) cavity behind it velocity being 
parallel to free surface is regarded under the 
assumption of flow separation from the upper or lower 
surface of the fragment. In case of final cavity 
formation it is closed at some distance S  from the 
fragment. Pressure on free surface is assumed equal to 
ambient pressure. Pressure in the cavity is assumed 
equal to the value of vapor saturation pressure 
depending on the constant of cavitation. Fluid is 
assumed to be ideal, depth – infinite, mass forces – 
negligibly small, flow field – plane.  
 

 
Fig.4. Formation of infinite cavity behind the fragment. 

 
Fig. 5. Formation of final length cavity behind the 
fragment. 
 
Velocity field in fluid is assumed to be potential  

0V V grad ϕ= +
 

, 
fluid will be regarded as linear compressible 

2
0 0( )P P a ρ ρ= + − , 

0

2 dPa
d ρρ

 
=  
 

,     (2) 

P=P( ρ )
0

,dPdP d
d ρ

ρ
ρ

 
→ =  

 
 

where ( , , )x y tϕ −  disturbance velocity potential, 

,P ρ −  fluid pressure and density, 0 0,P ρ −  pressure 
and density in quiescent fluid, a −  sonic velocity.  
Fluid flow satisfies continuity equation  

0d div V
dt
ρ ρ+ =



,                (3) 

pressure is determined by Cauchy-Lagrange integral  
2( ) ( )

2
grad dP c t

t
ϕ ϕ

ρ
∂

+ + =
∂ ∫ .              (4) 

Flow induced variations of density and velocity are 
considered small values.  

0/ ( ) / 1ρ ρ ρ ρ ρ′ = −  ; 

0 0/ 1; / 1x yV V V V  , 

where ,x yV V −  disturbance velocity components. 
Then it follows from continuity equation (3), integral 
(4) and relationship (2) neglecting small values of the 
orders higher than one, flow potential ϕ  under the 
condition of steady-state flow satisfies the equation  
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2 2 2
2 2

0 2 2 2V a
x x y
ϕ ϕ ϕ ∂ ∂ ∂
= + ∂ ∂ ∂ 

,               (5) 

and fluid pressure is determined  

0 0 0P P V
x
ϕρ ∂

− =
∂

.                       (6) 

Boundary conditions should be satisfied on the free 
surfaces, on the fragment surface contacting fluid and 
in the cavity. On the free surface and in the cavity 
constant pressure is assumed, on the fluid-fragment 
contact streaming condition of the equality of normal 
velocity component. 
The obstacle being thin and inclination angle being 
small all disturbances could be considered small, and 
boundary conditions take the form  

00, 0y P P= − = ; 

0, 0 sinyy h x L V V
y
ϕ θ+ ∂

= < < = = ⋅
∂

        (7) 

1. 0, 0 ; , 0y h x y h L x P P− += < = < − =  

2. 0, ; , 0 0y h L x y h x P P− += < = < − =  
3. 

2
0 0

0 .min

0

, 0
2

,

кав
Vy h x S P P P P C

y h L x S P P P

ρ−

+

= < < − = −∆ ∆ =

= < < − = −∆
 
    , 0xy h S x V±= < = . 
Substituting in (7) dynamical equation (6) boundary 
conditions look as follows 

0, 0y
x
ϕ∂

= =
∂

;  

0, 0 siny h x L V
y
ϕ θ+ ∂

= < < = ⋅
∂

; 

1. , 0 ; , 0y h x y h L x
x
ϕ− + ∂

= < = < =
∂

     (8) 

2. , ; , 0 0y h L x y h x
x
ϕ− + ∂

= < = < =
∂

 

3. 0 0

0 0

, 0

,

Py h x S
x V

Py h L x S
x V

ϕ
ρ

ϕ
ρ

−

+

∂ ∆
= < < = −

∂
∂ ∆

= < < = −
∂

;

, 0y h S x
x
ϕ± ∂

= < =
∂

. 

Thus equation (5) with boundary conditions (8) present 
a closed form statement of the problem.  
 
 

SOLUTION FOR THIN FRAGMENT 
PENETRATION IN COMPRESSIBLE 
FLUID 
 
We assume the flow to be subsonic. Then on 

introducing dimensionless parameter 21 Mα = − , 
where 0 /M V a= −  Mach number and dimensionless 
functions and variables 

*

ah
πϕϕ = ; * 0

2
0

P Pp
aρ
−

= ;  ;L Sl s
h h

π π
α α

= = ;  

* *;x yx y
h h

π π
α

= = ,                        (9) 

equations and boundary conditions take the form 
2 2

2 2 0
x y
ϕ ϕ∗ ∗

∗ ∗

∂ ∂
+ =

∂ ∂
,   

Mp
x
ϕ

α

∗
∗

∗

∂
=

∂
, 

0, 0y
x
ϕ∗

∗
∗

∂
= =

∂
; 

1, 0 ( )y x l M x
y
ϕπ γ

α

∗
∗ + ∗ ∗

∗

∂
= < < = ⋅

∂
; 

1. , 0 ; , 0y x y l x
x
ϕπ π

∗
∗ − ∗ ∗ + ∗

∗

∂
= < = < =

∂
 

(10)  

 2. , ; , 0 0y l x y x
x
ϕπ π

∗
∗ − ∗ ∗ + ∗

∗

∂
= < = < =

∂
 

3. 0 0

0 0

, 0

,

Py x s
x V a

Py l x s
x V a

ϕ απ
ρ

ϕ απ
ρ

∗
∗ − ∗

∗

∗
∗ + ∗

∗

∂ ∆
= < < = −

∂

∂ ∆
= < < = −

∂

;

, 0y s x
x
ϕπ

∗
∗ ± ∗

∗

∂
= < =

∂
. 

sin dytg
dx

θ θ≈ = .    
*

*
*

1 1 ( )dytg x
dx

θ γ
α α

= = . 

In successive derivations star in dimensionless value 
symbols will be omitted. The problem is reduced to 
developing analytical function in the domain 0y >  
with a cut , 0y xπ= > , satisfying boundary 
conditions (10). The solution will be developed in the 
form of a real part for the analytical function of a 
complex variable ( , ) Re ( ),x y z z x iyϕ = Φ = + . 
Thus development of the analytical function is reduced 
to Riemann – Hilbert problem. The latter for a special 
function type is reduced to Dirichlet problem. The 
solution for the Dirichlet problem is given by Schwarz 
integral. In case inclination angle is constant this 
integral can be taken in elementary functions. The 
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projections of forces are given by the following 
formulas: 

2 2 2 2
0 0

2

2 2 2
0 0

( 1)
;

2
( 1)

2

a hM u
X

a hM u
Y

ρ γ
α

ρ γ
α

+

+

−
=

−
= −

 - flow separation 

from the upper surface of the fragment, singularity at 
the front edge of the plate. 

2 2 2 2
0 0 0 0

2
0

2 2 2
0 0 0 0

0

(2 3 )
;

(2 3 )

a hM u u u
X

u

a M u u u
Y

u

ρ γ
α

ρ γ
α

+ + +

+

+ + +

+

− +
=

− +
= −

 - flow 

separation from the upper surface of the fragment, 
singularity at the rear edge of the plate. 

2 2 2 2
0 0

2

2 2 2
0 0

( 1)
;

2
( 1)

2

a hM u
X

a hM u
Y

ρ γ
α

ρ γ
α

−

−

−
=

−
=

 - flow separation 

from the lower surface of the fragment, singularity at 
the front edge of the plate. 

2 2 2 2
0 0 0 0

2
0

2 2 2
0 0 0 0

0

( 2 3 )
;

( 2 3 )

a hM u u u
X

u

a M u u u
Y

u

ρ γ
α

ρ γ
α

− − −

−

− − −

−

− + −
=

− + −
=

  

- flow separation from the lower surface of the 
fragment, singularity at the rear edge of the plate. 
 
The projection X represents the drag force, and 
projection Y – lift force, where 0u±  are the roots of 
algebraic equation 

0 0ln | | 1l u u= − − . 
 
Formulas below represent the solution for the case of 
closed cavity of final length,  flow separation from the 
upper surface of the fragment, singularity at the front 
edge of the plate. 

 
2 2 2 2

0 0 0 0
2

0

0 0 0 0
2 2 2

0 0 0 0 00 0 0
0 03 2

0 0 00 0 0 0

0 0

2 2 2
0 0 0 0

0

(2 3 )

(1 )(1 )
1 1 (2 3 )( 1) ln ( ln 1)

2 ( 1)
(1 )(1 )

1 1

(2 3 )

a hM u u u
X

u

s u s u
s s u u uahM P u M Ph u u

V us u s u
s s

a hM u u u
Y

u

ρ γ
α

ρ γ γ
ρ π α π

ρ γ
α

+ + +

+

+ + − +

+ − + + ++
+ +

++ + − +

+ −

+ + +

− +
= +

− −
+ −

− − − +∆ + ∆
+ + − −

−− −
− +

− −

− +
= −

0 0 0 0
2 2

0 0 0 0 00 0
0 03

0 0 00 0 0 0

0 0

(1 )(1 )
1 1 (2 3 )( 1) ln ( ln 1)

2 ( 1)
(1 )(1 )

1 1

s u s u
s s u u uahM P u M Ph u u

V us u s u
s s

ρ α γ
ρ π α π

+

+ + − +

+ − + + ++
+ +

++ + − +

+ −

−

− −
+ −

− − − +∆ + ∆
− − − −

−− −
− +

− −
 
Here 0s±  are the roots of algebraic equation 

0 0ln | | 1s s s= − − . 
The length of the cavity is determined from the 
condition of equality of the sum of upper and lower 
borders of the cavity vertical movements to vertical 
size of the cavity. In case of relatively small depth the 
following relation between the lengths of the fragment 
and cavity was obtained: 

2( )

2
0 0 02( )

22 ( 1)
1

L
h

L
h

L e
S V Le

P h

π
α

π
α

ρ γ π πα
α α

−

−

=
−

+ ⋅
∆

  (11) 

 
APPROXIMATION FORMULAS 
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Analysis of obtained results shows the asymptotic 
behavior of the forces depending on the ratio of 
fragment length, fluid layer thickness and pressure in 
the cavity. 
In case fluid separation takes place from the upper side 
of the fragment two flow scenarios are possible having 
singularity on the front edge and on the rear edge. [14] 
The front edge separation case has the following 
asymptotic solutions: 

1) / 0h L → : 
2 2 2

20
2 ( 1)

2
a hM LX

h
ρ γ π

α α
= − ; 

2 2
20 ( 1)

2
a hM LY

h
ρ γ π

α α
= − − ;   

2) h L →∞ : 
2 2 2

0
3

1
2

a M LX ρ γ π
α

= ; 

2 2
0

2

1
2

a M LY ρ γ π
α

= − . 

As it is seen the above formulas turn to be quite simple 
for the limiting cases of  very big or small depth, while 
for all the intermediate cases of interest they are rather 
complicated to be used directly. Due to that reason 
approximation formulas were developed. 
Numerical simulations based on the obtained solution 
made it possible to develop approximation formulas for 
dimensionless forces depending on parameter 

Ll
h

π
α

= : 

3
0,7

2 2
0 0

1 2
2

l
X

XF e
V L

α ππ
ρ γ

−⋅
= = − ; 

2
0,7

2
0 0

1 2
2

l
Y

YF e
V L

α ππ
ρ γ

−⋅
= = − +  

This parameter characterizes both relative depth of 
fragment motion (depth as related to the size of a 
fragment) and its velocity as compared with wave 

propagation velocity in fluid. Parameter 
Ll
h

π
α

=  

increases on decreasing depth and increasing velocity 
(only subsonic case is regarded), and increases on 
decreasing velocity and increasing depth. The velocity 
dependence is essentially non-linear. 
 
The rear edge separation case has the following 
asymptotic solutions: 
1) / 0h L → : 

2 2 2
0

2 (2 3 )a hM h LX
L h

ρ γ α π
α π α

= − + ; 

2 2
0 (2 3 )a hM h LY

L h
ρ γ α π

α π α
= − − + ; 

2) h L →∞ : 
2 2 2

0
33 a M LX ρ γ π

α
= ; 

2 2
0

23 a M LY ρ γ π
α

= − . 

Approximation formulas for dimensionless forces 

depending from parameter 
Ll
h

π
α

=  were developed: 

( )
3

0,4 0,8

2 2
0 0

2 1 0, 41
2

l
X

XF l e
V L

α π π
ρ γ

−⋅
= = + − ; 

( )
2

0,4 0,8

2
0 0

2 1 0,41
2

l
Y

YF l e
V L

α π π
ρ γ

−⋅
= = − − −  

In case fluid separation takes place from the bottom of 
the fragment two flow scenarios are possible having 
singularity on the front edge and on the rear edge.  
The front edge separation case has the following 
asymptotic solutions: 

1) / 0h L → : 
2 2 2

0
22

a hMX ρ γ
α

= ; 

2 2
0

2
a hMY ρ γ

α
= ; 

2) h L →∞ : 
2 2 2

0
34

a M LX πρ γ
α

= ; 

2 2
0

24
a M LY πρ γ
α

= . 

Approximation formulas for dimensionless forces 

depending from parameter 
Ll
h

π
α

=  were developed: 

( )
3

0,5 0,7

2 2
0 0

1 0,11 2
2

l
X

XF l e
V L

α π

ρ γ

−⋅
= = − ;  

( )
2

0,5 0,7

2
0 0

1 0,11 2
2

l
Y

YF l e
V L

α π

ρ γ

−⋅
= = −  

The rear edge separation case has the following 
asymptotic solutions: 
1) / 0h L → :  

2 2 2 2 2
0 02 2

2

2 2;
L L
h ha hM a hMX e Y e

π π
α αρ γ ρ γ

α α
= − = −

; 

2) h L →∞ :  
2 2 2

0
3

3
2

a M LX ρ γ π
α

= ; 

2 2
0

2

3
2

a M LY ρ γ π
α

= . 
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Approximation formulas for dimensionless forces 

depending from parameter 
Ll
h

π
α

=  were developed: 

( )
3

0,4 0,8

2 2
0 0

2 1 0,41
2

l
X

XF l e
V L

α π π
ρ γ

−⋅
= = + − ;  

( )
2

0,4 0,8

2
0 0

2 1 0, 41
2

l
Y

YF l e
V L

α π π
ρ γ

−⋅
= = + −  

Using the relation (11) the drag and lift forces in case 
of cavity formation may be estimated for relatively 
small depth. 
 

2
2 2 2 2 2 20 0 02( )

0 0 0
3 2 3

0

2
2 2 22 0 0 02( )0 0

2 2
0

2( 1)2( ln(1 ))
2

2( 1)2( ln(1 ))
2

L
h

L
h

Va M L PL M PLL LX e
h h P h

Va M L M PLPL L LY e
h h P h

π
α

π
α

ρ γ πρ γ π ργ π γπ πα
α ρ α α α α α

ρ γ πρ γ π γρ π π πα
α ρ α α α α α

−

−

−∆ ∆
= + + + ⋅ +

∆

− ∆∆
= − − + + ⋅ −

∆

 

 
Fig.6. Relation between the force Fx and dimensionless parameter 1 ( ) ( )l h Lα π=  obtained numerically and using 
approximation formula in case of separation from the bottom of the fragment having singularity on the front edge. 
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Fig.7. Relation between the force Fx and dimensionless parameter 1 ( ) ( )l h Lα π=  obtained numerically and using 
approximation formula in case of separation from the upper side of the fragment having singularity on the rear edge. 
 
Comparison of approximation formulas and exact 
solutions is provided in Figs. 6 and 7. 
As it is seen from Figs. 6 and 7 the developed 
approximation formulas provide sufficient precision for 
a wide range of governing dimensionless parameter 
variation. 
 
Thus, solution was obtained for a problem of fragment 
motion in compressible fluid at a final depth, constant 
velocity and inclination angle. Both cases of positive 
and negative inclination were regarded, which means 
flow separation from the upper side and bottom side of 
the fragment. Both cases of infinite cavity behind the 
fragment and final length cavity were regarded. For the 
case of final length cavity vapor pressure in it is less 
then the pressure on free surface.  
 
The solution allows determining drag and lift forces in 
the limiting cases, the relation between the fragment 
length and the cavity length in the case of small depth. 
The forces increase when the pressure in the cavity 
decreases.  

 
FRAGMENTS DECELERATION IN A FLUID-
FILLED CONTAINMENT 

Below estimates will be provided for fragment 
slowing down on penetrating containment partially 
filled with fluid, and for the dynamics of its energy 
conversion into the energy of expanding shock waves 
loading the containment from inside. At this stage of 
our study compressibility effects would play essential 

role in converting kinetic energy of a fragment into the 
energy of a blast wave expanding from the zone of 
energy release. 
Formulas for resistance force acting on the plate 
moving in liquid parallel to free surface were used to 
simulate fragments deceleration. Analysis of formulas 
obtained in the previous section made it possible to 
develop the following simplified formula for resistance 
force:  

2 21 (1 )
2

h
L

dF V C e rρ π
−

∞= − .               (12) 

Integration of momentum equation for the 
fragment motion affected by the resistance force (25) 
yields  

0

B x
mV V e

−
= ,where 21 (1 )

2

h
L

dB C e rρ π
−

= −  (13) 

The rate of energy release due to deceleration of the 
impactor in liquid filling containment is determined by 
formula: 

2 2 22 2
0 0 0 1

2 2 2

B Bx x
m mmV mV mVe e

− − 
Θ = − = − 

 
 (14) 

Calculations were performed taking 
parameters corresponding to experiments [12] as an 
example. Drag coefficient was assumed to be 

1.68dC = . 
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Fig. 8. Velocity(m/s) versus distance(m) for different depths of fragment 0.335m g=  motion under free 
surface. 

 
Fig. 9. Energy(j) versus distance(m) for different depths of fragment 0.335m g=  motion under free surface. 
 
Fig. 8 illustrates the dependence of fragment 

velocity on distance for different depths of its motion 
under free surface. Initial fragment velocity was 
assumed 2720 m/s, fragment mass 0.335g. It is seen 
that for the small depth 0.1 mm (practically gliding 
along the surface) fragment’s deceleration is negligibly 
small and its velocity, practically, does not change. The 
energy released to form shock wave internal loading of 
containment is negligible small as well (Fig. 9) 

However, 20 mm depth already brings to essential 
deceleration and absolute velocity loss takes place 
practically at a distance 60 mm. Fig. 9 illustrates the 
dependence of released energy versus distance for 
different depths of fragment motion. As seen from 
Fig.9 moving at a depth 20 mm brings to 95% energy 
release after fragment penetrates 15 mm, which should 
initiate shock wave most strongly affecting front wall. 
Thus on penetrating the containment deep under the 
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surface fragment should rather cause damage of the 
front wall, while penetrating the containment more 
close to free surface would bring to much smaller 
deceleration, most part of energy being released near 
the rear wall or preserved within the impactor. Under 
these conditions maximal damage could appear on the 
rear wall. 

 
FRAGMENTATION ON FRONT WALL 
In case velocity of impact and strength limit of 

impactor material are in combination resulting in 
fragmentation of a fragment and a part of the front wall 
a different flow scenario can take place. Small 
frgments partially penetrate inside the containment 
forming a cloud, and partially propagate in the opposite 
direction forming the so-called ejecta. Fig. 10 
illustrates experimental (a) and theoretical (b) results 
on thin wall perforation and cloud formed in impact of 
a 5 mm particle at a velocity 5 km/s. 

 
 

 
Fig. 10. Experimental (a) and  theoretical (b) modeling 
of fragmentation in particle impact on metallic wall. 
 
The cloud of small fragments decelerate much faster 
than a single fragment. Thus energy release will take 
place more close to the front wall. Thus, the 
investigated structure – fluid filled containments – 
could tern to be an effective protection in hypervelocity 
impact as well. 

 
ANALYSIS OF RESULTS 

 
It was demonstrated that on slowing down the 

fragment conversion of its kinetic energy into the 
internal energy of the surrounding gas (or fluid) takes 
place. The rapid increase of the density of energy in a 
small volume inside the containment gives birth to 
diverging blast waves inside the containment that 
reflects from the walls thus producing non-uniform 
loading. 

The less is the fluid density, the slower is 
deceleration, and the weaker is the shock wave formed 
inside containment. Due to that reason increase of 
overall initial pressure brings to formation of stronger 
shock waves and increase of the damage level. 
Penetration of fragment deep below the liquid level 
also brings to its faster deceleration due to much higher 
density ratio as compared to deceleration in gas. 
However, overall drag coefficient is dependent on the 
depth of fragment motion below the liquid-gas 
interface, because gas is highly compressible as 
compared with liquid, which permits fluid separation 
from the fragment thus reducing the drag on 
approaching the free surface.  

The partial filling of containment by fluid creates 
the conditions, under which maximal damages of a 
containment could evolve from the rear wall to the 
front wall, which was demonstrated both theoretically 
and experimentally.  

 

CONCLUSIONS 

Mathematical model for the fragment impact on a 
rather thin-walled containment, which could be filled 
in with gas, liquid, or both liquid and gas phases 
having a distinct phase interface was developed.  

That creates an option for designing an effective 
shield for protecting different structures, especially 
orbital stations thus decreasing the hazardous 
consequences of Space debris particles impact. 
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